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Abstract

Automated assessment of cardiac health from magnetic resonance imaging (MRI)
plays an important role in assisting the clinical diagnosis of cardiac problems with
great accuracy and in a timely manner; however, it is still challenged by variations
in image quality and complex structures of the heart. This paper presents a multi-
faceted deep learning model of cardiac image segmentation and classification with
a multifaceted preprocessing and modeling pipeline. First, a strong preprocessing
method, such as resampling, intensity normalization, and histogram equalization,
was used to increase image quality and consistency and then the process of data
augmentation to increase the diversity of the dataset and model robustness. For
segmentation phase, Inverted U-Net based architecture is created by incorporat-
ing Deep Neural Networks (DNN), Graph Neural Networks (GNN), and Long
Short-Term Memory (LSTM) networks to properly capture spatial and contextual
dependency in the cardiogram images. The segmentation performance was eval-
uated with accuracy, precision, and dice coefficient as the Inverted U-Net++ with
LSTM showed the best performance with the maximum accuracy being 0.813 by
successfully modeling the complicated structural patterns. In the classification
phase, the segmented cardiac images were categorized into normal and abnormal
segmentation using Support Vector Machine or SVM, Long Short Term Memory
or LSTM and Convolutional Neural Networks or CNN. Comprehensive evalua-
tion with the help of accuracy, precision, recall and F1-score proved LSTM-based
classifiers outperforming the competing models with the highest classification ac-
curacy of 0.813. The comparison between segmentation and classification stages
reveals the effectiveness and strength of the offered framework. Overall, the re-
sults show the potential of the proposed approach to provide accurate and reliable
automated cardiac health assessment, and is a promising decision support tool for
clinical cardiac diagnosis.
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1 Introduction

According to a survey conducted by the World Health Organisation (WHO) in 2017, Cardiovascular
diseases claim the highest number of lives, and thus stand as a global health challenge; causing 17.9
million deaths annually, a figure poised to rise [1]. Rooted in heart and blood artery issues, these
diseases, including arrhythmia, heart failure, stroke, and heart attacks, underscore the critical importance
of understanding the intricacies of the human heart.

The heart, a muscular organ nestled within the rib cage on the middle left side of the body, is subdivided
into four chambers: including both atriums (Left and right) and both ventricles. A vital organ responsible
for pumping blood throughout the body, the heart relies on a sophisticated system of valves and chambers
to maintain the flow of deoxygenated and oxygenated blood. Superior and inferior vena cava transport
deoxygenated blood to the right atrium, initiating a complex sequence involving valves, ventricles,
and arteries [2][3]. The left and right ventricles contract rhythmically, collectively orchestrating what is
commonly known as the heartbeat, all while the interatrial and interventricular septa ensure the separation
of deoxygenated and oxygenated blood [4].

This intricate cardiovascular system is susceptible to diseases, often exacerbated by unhealthy lifestyles.
Cardiovascular diseases, with their devastating impact, necessitate thorough examination and diagno-
sis. Initial assessments commonly involve electrocardiograms (ECGs) to depict the heart’s electrical
impulses’ rhythm, strength, and timing. Imaging, employing techniques such as Magnetic Resonance
Imaging (MRI) and ultrasound, unveils the internal structures, with Cardiac MRI offering detailed
insights into heart diseases [2].

In the realm of medical image analysis, a key challenge lies in automated segmentation, dividing
images into meaningful regions for precise delineation of structures. This is particularly crucial in
cardiac imaging, where defining the left ventricle (LV) is essential for evaluating cardiac function. The
synergy between segmentation and classification, the latter involving categorizing images to distinguish
healthy and unhealthy hearts, plays a pivotal role in automated cardiac image analysis[5]. Researchers
have advanced these techniques, incorporating machine learning and deep learning to achieve greater
accuracy with early detection of illnesses.

This research aims to bridge the transition from manual to automated cardiac image analysis. Section 1.1
provides motivation and background, exploring the significance of this shift. Section 2 identifies research
gaps and articulates the primary problem this work seeks to address. A comprehensive review of relevant
literature, including segmentation and classification strategies, is presented in Section 3. Section 4
delves into the proposed methodology, elucidating the developed strategy and related evaluation metrics.
Subsequent sections detail the results and outline potential directions for future research, providing a
meticulous examination of the research landscape.

1.1 Background

In the past, interpreting cardiac images required a lot of work and depended on the expert opinion of
highly qualified individuals. Despite its established methodology, the manual approach proved to be
laborious and depended on inter-observer variability, which had the potential of affecting the accuracy of
the diagnosis[6]. In cardiac image analysis, the advent of automated segmentation and classification tech-
niques represents a revolutionary development. These techniques improve the interpretation of cardiac
images by integrating computational methods and utilizing artificial intelligence to achieve efficiency,
objectivity, and scalability. Before the advent of automation, medical experts faced the difficult challenge
of manually drawing boundaries between cardiac structures—a task full of subjectivity and resource-
intensive efforts[7]. More advanced techniques for analysis became more and more necessary as medical
imaging technologies developed. These requirements are fulfilled by automation in segmentation and
classification offering to extract requisite information from cardiac images in a reliable and standardized
way.

The early efforts of researchers in computational methods marked the beginning of the automation jour-
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ney in cardiac image analysis. Since then, this journey has developed into the field of deep learning
architectures, expanding the boundaries of automated analysis capabilities. This work adds new perspec-
tives and techniques to improve the automated analysis of cardiac images, building on the foundations
established by these pioneers.

In this academic investigation, we delve into the obstacles faced in cardiac imaging. Our study aims to
make significant contributions to this field by:

1. This research endeavors to improve diagnostic accuracy by exploring the complexities of automated
segmentation and classification in cardiac imaging.

2. Itis also capable of revolutionizing the cardiovascular healthcare field. The amalgamation of cutting-
edge technologies and inventive approaches functions as a landmark directing us towards a future
where cardiac diseases can be identified and managed with unmatched precision and effectiveness.

3. This revolutionary potential emphasizes how rapidly automated cardiac image analysis research must
proceed.

2 Literature Review

The leading cause of death is cardiovascular disease nowadays. It includes multiple diseases like heart
failure, heart attack, stroke, arrhythmia, etc. All these diseases majorly can be detected by determining
the affected heart[8]. Heart conditions can be identified by cardiac MRI. MRI segregates the Major
biomarkers including ejection fraction and volume of the left ventricle to detect anomalies like coronary
artery disease, and cardiac insufficiency[9][10]. The Left Ventricle has added importance as it carries out
the pumping of blood to the entire body, thereby making left ventricle’s segmentation a challenging and
significant task[11][12]. Tremendous advancements in technology have entered our lives in every field.
Deep Learning (a subset of Machine Learning) has the potential to improve medical specialties for better
patient care. Medical Image Segmentation has thus addressed many aspects of cardiac image analysis;
left ventricle segmentation remains the most common task [1][7]. It is also crucial for the quantification
of cardiac function and morphology aiding further management of cardiac pathologies. As highlighted
earlier, cardiovascular diseases stand out as the most common cause of death worldwide. [5][13][14]

2.1 Preprocessing

Various preprocessing techniques are used by researchers to improve the efficiency of segmentation
and classification in medical image analysis. Filtering is a crucial step in this process that tries to
improve image quality and lower noise [4][6][12]. To ensure consistency in the analysis, intensity
normalization techniques are used to standardize pixel values across images. Resizing has been widely
used, allowing for uniform processing by standardizing image dimensions. Furthermore, to achieve
robust feature extraction, the distribution of pixel intensities is equalized through the use of histogram
matching [13][11][15]. By helping to focus on pertinent regions of interest, cropping strategies are
applied, which improves the accuracy of segmentation[16]. Additionally, a lot of people are using data
augmentation techniques to make the dataset artificially larger, which improves model generalization.
In medical image analysis, these preprocessing techniques work together to optimize the input data for
subsequent segmentation and classification tasks[9][17][18].

2.1.1 Intensity Normalization

Dealing with the rising issues related to variations in imaging methods is a common challenge in medical
image analysis. In Cardiac MRIs, to standardize image intensities for consistency and enhance the
interpretability of results, one of the most commonly used techniques by the researchers is intensity
normalization[8][14][19]. Some of the traditional techniques recommended by the researchers for
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intensity normalization include Z-score normalization, Min-Max Scaling, Histogram-based Methods,
and CLAHE (Contrast Limited Adaptive Histogram Equalization).

This review of the literature offers an overview of the various approaches and strategies used in intensity
normalization for medical image processing, emphasizing the transition from conventional methods
to more modern deep learning-based techniques[20]. Researchers persistently investigate innovative
methods to tackle the peculiarities and difficulties associated with medical imaging data.

Most of the researchers have used quantitative metrics including MSE - Mean Squared Error, Mutual
Information, and SSI - Structural Similarity Index, to evaluate the efficacy of intensity normalization
techniques. Furthermore, depending on the medical imaging modalities, domain-specific metrics like
accuracy, precision, recall, F1-score, and dice Coeflicient are commonly used for segmentation tasks.

2.1.2 Resampling

Resampling is an important preprocessing step in medical imaging that involves changing the spatial
resolution, voxel size, or image orientation. It is critical in standardizing data for analysis, improving
computational efficiency, and addressing data heterogeneity challenges [6][19][21][22]. Some of the
traditional techniques recommended by the researchers for resampling Spatial Resolution and Voxel
Size Resampling, some of the researchers used Interpolation Techniques for resampling the dataset i.e.
Trilinear Interpolation, Bilinear, and Bicubic Interpolation.

Researchers have used different metrics such as contrast-to-noise ratio (CNR), signal-to-noise ratio
(SNR), and structural similarity index (SSI) to assess the impact of resampling on image quality [12][23].

Resampling is a critical preprocessing step in medical imaging that influences image quality and compara-
bility for subsequent analysis. From traditional interpolation methods to emerging learnable resampling
techniques, ongoing research is refining resampling strategies, addressing challenges, and improving the
adaptability of medical imaging data for a variety of applications [10][22][24].

This review of the literature provides an overview of resampling techniques in medical imaging, em-
phasizing the importance of standardizing spatial properties for various applications such as diagnosis,
treatment planning, and image analysis [25]. Ongoing research and innovation aim to improve resampling
methodologies in the medical imaging domain for increased efficiency and accuracy.

2.2 Data Augmentation

Medical image datasets are very limited in size and heterogeneity which causes difficulties for researchers
in training models. To enhance the generalization of the model and robustness and overcome this
challenge, data augmentation is used by the researchers to enlarge the dataset. From traditional to
advanced techniques, researchers continue to innovate, addressing challenges and pushing the boundaries
of augmentation techniques in the medical domain. Usually the researchers have used different techniques
for data augmentation i.e. Geometric Transformations [9][26], Intensity Transformations [7][19][25],
and Generative Adversarial Networks (GANSs) [6].

To use this pre-processing technique researchers have been very careful about ethical concerns as medical
data is very sensitive in terms of privacy.

An overview of data augmentation techniques for medical imaging is given in this review of the literature,
with a focus on both conventional approaches and innovative methods that have been used to solve the
particular problems caused by the limited availability and diversity of medical datasets. In this area,
research is still being done to find new ways to enhance model performance and adaptability in medical
image analysis.
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2.3 Segmentation

The process of partitioning images into distinct regions of interest, such as organs, tumors, or anatomical
structures, is known as segmentation [27]. In various medical imaging modalities, accurate segmentation
is critical for diagnosis, treatment planning, and quantitative analysis.

2.3.1 Traditional Segmentation Techniques

Initially, researchers have used different traditional segmentation techniques to segment the medical
image data into different parts. Researchers have used different traditional segmentation techniques i.e.
Thresholding [28], Region Growing [5][29], and Edge Detection [3][13][30].

2.3.2 Intensity-Based Segmentation

Some of the researchers have also used different intensity-based segmentation techniques i.e. Fuzzy
C-Means(FCM) as a clustering algorithm, considering the intensity and spatial information[31]. Robust
for segmenting tissues with overlapping intensity distribution. Some researchers also used K-Means
clustering for partitioning pixels into different clusters based on intensity values [24]. This clustering
technique requires careful initialization and may be sensitive to outliers, so this will not perform much
better on medical imaging datasets.

2.3.3 Machine Learning based Segmentation

Researchers have widely used two machine learning techniques for medical images segmentation i.e.,
Random Forest and Decision Trees [2][11][28][30]. Both techniques are supervised learning-based
models for pixel-wise classification. Efficient and robust but may struggle with complex anatomical
structures.

2.3.4 Deep learning based Segmentation

Researchers have developed different U-Net variants and architectures to address the challenges faced in
medical image segmentation. Ronneberger et al. in ”U-Net: Convolutional Networks for Biomedical
Image Segmentation” introduced U-Net architecture in 2015 which consists of a bottleneck, a con-
tracting path, and an expensive path. Later in 2016, Milletari et al. in ”V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation” introduced V-Net which extends U-Net
to 3D volumes, to incorporate 3D convolutions for volumetric medical image segmentation. Apart
from direct variants, SegNet developed by Badrinarayanan et al. in ”SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation” in 2017 employs an encoder-decoder architec-
ture similar to U-Net, emphasizing the use of pooling indices for efficient segmentation. Attention U-Net
incorporates attention gates to selectively highlight important features. Oktay et al. introduced this
variant in “Attention U-Net: Learning Where to Look for the Pancreas” (2018), enhancing the model’s
ability to focus on relevant regions. Inspired by ResNet architectures residual U-Net integrates residual
connections. Reported by Cigek et al. in 3D U-Net: Learning Dense Volumetric Segmentation from
Sparse Annotation” (2016), it aims to alleviate vanishing gradient issues and ease training. Recurrent
Net combines U-Net with recurrent layers to incorporate temporal dependencies Proposed by Li et al.
in ”On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcel-
lation as a Pretext Task™ (2018) for medical image segmentation in dynamic sequences[32]. Working
in advancement for residual net and recurrent u-net, a combination of recurrent and residual connec-
tions proposed by Xue et al. in “Recurrent Residual U-Net for Medical Image Segmentation” (2019)
addresses both temporal dependencies and gradient vanishing issues. Nested U-Net proposed by Isensee
et al. in "Automated Design of Deep Learning Methods for Biomedical Image Segmentation” (2018)
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incorporates multiple nested skip pathways to capture multi-scale contextual information. The most
commonly used extension of the original U-Net by Zhou et al. U-Net++ “U-Net++: A Nested U-Net
Architecture for Medical Image Segmentation” (2018) introduces densely connected skip pathways for
improved information flow.

These variations demonstrate the U-Net architecture’s versatility for a range of medical imaging ap-
plications, combining multiscale features, recurrent connections, and attention mechanisms to improve
segmentation performance and accuracy [9][23][27]. Researchers are still looking into new architectures
and modifications to enhance U-Net-based models’ performance in medical image segmentation.

2.4 Classification

Researchers studying the classification of cardiac images have used a variety of deep learning techniques
(subset of machine learning technique) include Random Forests, Long Short-Term Memory Networks,
Convolutional Neural Networks, and Multi-Layer Perceptrons. The combined application of these
strategies advances the effectiveness of healthcare interventions and improves the accuracy of diagnosis.
Within the field of cardiac image classification, researchers have utilized Random Forests (RF) as a robust
and versatile approach for distinguishing between abnormal and normal hearts. As an ensemble learning
technique, RF combines several decision trees to create an effective predictive model. RF performs
exceptionally well when handling intricate and non-linear relationships within the extracted features in
the context of cardiac image analysis[32]. RF offers a thorough comprehension of the underlying patterns
in segmented cardiac images by combining the results of several decision trees. Random Forests are an
invaluable tool for precise classification in the field of cardiac health assessment because of their versatility
in handling a wide range of features and their effective skill in handling high-dimensional data. Another
approach used to classify normal and abnormal hearts is Convolutional Neural Networks (CNNs). CNNs
use convolutional layers to learn hierarchical features automatically which are obtained from segmented
MRI images making them ideal for image analysis. CNNs are especially effective at identifying patterns
and spatial dependencies in the segmented images when it comes to cardiac image analysis. The network
can identify intricate local features and their combinations by applying convolutional operations, which
helps to produce robust and distinctive characteristics for accurate classification. Long Short-Term
Memory (LSTM) neural networks are used by researchers to classify abnormal and normal hearts using
features taken from segmented cardiac images. Medical image datasets can benefit from the temporal
analysis capabilities of recurrent neural networks (RNNs), such as long short-term memory (LSTM),
which have demonstrated a high degree of proficiency in capturing sequential dependencies in data.
By using this method, the model is capable of identifying complex patterns and temporal relationships
among the sequential features, which helps with the accurate classification of cardiac conditions.

3 Methodology

This section is the starting point for deciphering the details of my suggested segmentation and classifica-
tion methodology for cardiac images. The methodology serves as a guide that directs the course of our
research, delineating the systematic approach utilized to attain precise and significant outcomes. We will
go into detail about the particular techniques and algorithms applied to image segmentation, explaining
how the boundaries of cardiac structures are accurately drawn. At the same time, the section will reveal
the specifics of the classification process, demonstrating the characteristics and standards used to classify
divided areas.

3.1 Dataset

Medical image computing and computer-assisted intervention (MICCALI) is an International Conference.
The Sunnybrook Cardiac dataset was prepared for the MICCAI 2009 Left Ventricle Segmentation
challenge. It can currently be accessed through the Cardiac Atlas Project (CAP) under a public domain
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license. SCD contains 45 short-axis cine magnetic resonance images in DICOM (Digital Imaging and
Communications in Medicine) format. DICOM format contains multiple parameters of patient and image
metadata.

The CMR images are divided into four pathological groups which include heart failure without infarction,
heart failure with infarction, hypertrophy, and healthy. Out of 45 images, the healthy pathology group
contains 9 cases, and in the unhealthy pathology group of hypertrophy, heart failure with infarction, and
heart failure without infarction, there are 12 cases each. 4 pathology groups are generalized into binary
classifications i.e. healthy and unhealthy classes.

Images in this dataset are captured at a time resolution of 20 cardiac phases per cardiac cycle while the
patient holds his breath for 10 to 15 seconds. From the base to the apex, 20 frames in 6—12 slices of the
short-axis view steady-state free precession (SSFP) images were obtained. The obtained images have a
thickness of 8 mm and a size of 256 x 256 pixels. For every patient record, a set of contours is manually
drawn at the end-diastolic (ED) and end-systolic (ES) slices. Perry Radau of the Sunnybrook Health
Science Center drew these contours [49 (reference of the basic website]. Physicians are given access
to the data without any pre-processing. Along with the contours, patient data is provided in a CSV file
which gives information regarding the group of pathology, age, and gender of the patient. The complete
dataset is divided into two groups: training and testing with a ratio of 80:20.

3.2 Data Preprocessing

This section studies the intricacies of preprocessing, which is a fundamental aspect of refining medical
images. Preprocessing is essential because it improves variability in lighting, contrast, and overall image
quality, establishing the foundation for further analysis. We’ll demonstrate how to apply histogram
equalization improving my cardiac image segmentation’s robustness and classification. This method
will be used to normalize intensity distributions so that different images have a standardized contrast.
We’ll additionally go over how intensity normalization is applied, which an essential preprocessing step
is meant to reduce variations in pixel intensities. By working together, these metrics help create a
dataset that is more consistent and trustworthy, which prepares the groundwork for the segmentation and
classification phases of cardiac image analysis that follow.

3.2.1 Histogram Equalization

It is a technique for image processing that improves image contrast by redistributing intensity levels.
It’s especially useful when an image has a limited contrast range, which means the pixel intensities are
concentrated in a narrow range, making some details difficult to discern. Histogram equalization extends
the intensity levels across the entire range, making the image more visually appealing and improving
detail visibility. This is how it works:

* Computing the Histogram: The original image’s histogram is computed as the first step in histogram
equalization. The frequency of occurrence of each intensity level in the image is represented by the
histogram.

e Cumulative Distribution Function (CDF) Calculation: Next, compute the histogram’s cumulative
distribution function (CDF). The cumulative sum of histogram values is represented by the CDF,
which provides the mapping of each intensity level to a new intensity level.

* Mapping Intensity Levels: Normalize the CDF to map the original intensity levels to new intensity
levels. This normalization spreads the pixel intensities across the entire available range, effectively
enhancing the contrast.

* Applying the Mapping Function: Replace the image’s original intensity levels with the mapped intensity
levels obtained from the normalization step.
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3.2.2 Z-Score Normalization

Z-score normalization which is also known as standardization, is used for re-scaling pixel values in
medical images so that they have a mean of 0 and a standard deviation of 1. This procedure converts the
pixel values into a standard scale, allowing for easier comparison of different images and ensures equal
contribution by each feature to the analysis.

3.3 Data augmentation

This technique is used in machine learning, particularly in deep learning, to enhance the size of a training
dataset artificially by applying different transformations i.e. Rotation, Flip, Scaling, and Shearing to
existing data. Data augmentation in the case of medical images entails applying transformations to the
images, resulting in new, modified versions of the original images. When the available dataset is limited,
this technique is useful because it helps to diversify the data, and enhance the performance and robustness
of machine learning models.

3.4 Quality Control

Automated Quality Control (QC) metrics for medical images are critical tools for evaluating image
quality and consistency in a healthcare or research setting. Quality metrics i.e. Uniformity, Spatial
Resolution, Pixel Intensity Histogram Analysis, and Edge Sharpness are critical for ensuring accurate
diagnosis, dependable research outcomes, and overall medical imaging workflow efficiency. Uniformity
determines the consistency of pixel intensities across an image. Uniformity metrics aid in identifying
variations in image brightness that may indicate imaging equipment problems. Spatial Resolution
assesses the imaging system’s ability to distinguish between small structures. Algorithms can evaluate
the sharpness of edges and fine details in an image. Deep learning models can be trained to detect
various image quality issues such as artifacts, noise, and distortions, allowing for a more comprehensive
approach to automated QC.

3.5 Data Segmentation

This section examines various approaches to medical image segmentation that make use of the Inverted
U-Net architecture in varied configurations. To improve segmentation performance, the first method
combines Graph Neural Networks (GNN) with the Inverted U-Net to capture complex pixel relationships
and contextual information. An alternative approach investigates the amalgamation of Long Short-Term
Memory Networks (LSTM) with Inverted U-Net, capitalizing on LSTM’s capacity for sequential learning
to enhance spatial comprehension in medical image segmentation assignments. Furthermore, a third
approach explores the combination of Inverted U-Net and Deep Neural Networks (DNNs), employing
DNNSs to extract intricate features necessary for precise segmentation. Along with the comparison of
these three approaches, we will compare the results with existing work as well.

3.5.1 Inverted U-Net with DNN

Creating an inverted U-Net architecture with deep neural networks (DNNs) for medical image segmen-
tation involves combining the inverted U-Net structure with additional layers of fully connected or dense
neural networks. When implementing this architecture, it’s important to experiment with the number
of layers, filter sizes, and other hyperparameters to identify the configuration that suits best for your
desired medical image segmentation task. Additionally, consider using transfer learning by initializing
the encoder layers with pre-trained weights from models trained on large datasets if your dataset is
small or similar to the source dataset. Transfer learning can help improve the model’s performance and
generalization ability.
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Original Image Contours Segmented Image

Figure 1: Segmented Image using Inverted U-Net with DNN

3.5.2 Inverted U-Net with GNN

Combining an Inverted U-Net architecture with Graph Neural Networks (GNNs) for medical image
segmentation involves leveraging both spatial and relational information from the images. When imple-
menting this architecture, it’s crucial to carefully design the graph structure and consider how nodes and
edges are defined. Experimentation with hyperparameters, including the number of GNN layers, filter
sizes, and graph construction methods, is necessary to optimize the model’s performance for the specific
medical image segmentation task at hand. Additionally, consider leveraging pre-trained GNN models or
pre-trained U-Net encoders to enhance the model’s capabilities, especially if the dataset is limited.

Contours

Original Image Segmented Image

Figure 2: Segmented Image using Inverted U-Net with GNN

3.5.3 Inverted U-Net with LSTM

Combining an Inverted U-Net architecture with Long Short-Term Memory (LSTM) networks for medical
image segmentation allows the model to capture both spatial features through the Inverted U-Net and
temporal dependencies through the LSTM. When implementing this architecture, it’s important to
experiment with the number of LSTM layers, filter sizes, and other hyperparameters to identify the
configuration that best suits for your specific medical image segmentation task. Also, consider the
computational complexity and memory requirements associated with using LSTM layers, especially if
dealing with large medical image sequences.
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Original Image Segmented Image

Figure 3: Segmented Image Inverted U-Net with LSTM

4 Image Segmentation Performance Metrics

To assess the accuracy and reliability of the generated segmentations, evaluation of the performance of
medical image segmentation is critical. A number of metrics are commonly used for quantifying the
quality of segmentation results. Here are some key performance metrics for medical image segmentation:

4.1 Dice Coeflicient (DSC)

2|xNY|

DSC =
| XT+1Y]

ey

Where A and B are the segmented and ground truth regions, respectively. Advantages: DSC measures
the overlap between the predicted and ground truth regions, providing a balanced assessment of both
false positives and false negatives.

4.2 Precision (Positive Predictive Value)

Precisi rp @)
recision = ———

TP+ FP
Advantages: Precision measures the accuracy of positive predictions, indicating how many of the
predicted positive cases are actually positive.

4.3 Accuracy

| TP +TN )
ccuracy =
Y= TP+TN+FP+FN

We evaluated the performance of various U-net models during the segmentation phase, paying focus on
Invert-U-Net++ variants that included a variety of architectures. Notably, after 30 training epochs, the
Invert-U-Net++ LSTM model showed the most promise, obtaining a Dice Coefficient of 0.796. This
measure illustrates how well the LSTM variant outperforms conventional deep neural networks (DNN)
and graph neural networks (GNN) in terms of accurately defining cardiac structures. Furthermore, the
Invert-U-Net++ LSTM model’s precision of 0.831 and accuracy of 0.813 highlights its ability to positive
segment instances.
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Table 13.1: Image Segmentation Result Comparison

U-net Models Epochs Dice Coefficient Accuracy Precision
Invert-U-Net++ DNN 30 0.673 0.718 0.698
Invert-U-Net++ GNN 30 0.731 0.74 0.756
Invert-U-Net++ LSTM 30 0.796 0.813 0.831

U-net Models

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Dice Coefficient Accuracy Precision

W [nvert-U-Net++ DNN H Invert-U-Net++ GNN ®E Invert-U-Net++ LSTM

Figure 4: Graphical Representation of Segmentation Result

The thorough assessment of these segmentation models highlights the importance of utilizing cutting-
edge architectures, especially LSTM, for accurate and subtle cardiac image segmentation. The results
have direct implications for raising the standard of diagnostic accuracy in the medical field because the
Invert-U-Net++ LSTM model’s high precision and accuracy raise the standard of subsequent disease
classification. These results add to the continuing discussion about the application of advanced neural
network architectures in medical imaging by highlighting their ability to raise the bar for accuracy and
dependability in critical diagnostic procedures.

5 Classification

5.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) have been applied in medical imaging for classification, segmentation,
and diagnostic tasks widely. SVMs are known for their effectiveness in handling high-dimensional data
and distinguishing between different classes. SVMs were initially applied to medical imaging datasets
for tasks such as tumor classification, tissue segmentation, and disease detection. Researchers leveraged
SVMs owing to their ability to handle complex, and non-linear relationships in the data.
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Figure 5: Flow of Classification using SVM Classifier

5.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network (RNN), are primarily
designed for sequential data and time-series analysis. While they are not the most obvious choice for
traditional medical imaging tasks, they can be applied to certain scenarios where temporal information
is crucial.
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Figure 6: Flow of Classification using LSTM

5.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are utilized in medical imaging owing to their capability to learn
hierarchical features from images automatically. Particularly, CNNs were found successful in tasks such
as image classification, segmentation, and object detection.
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6 Results and Discussion

Within the framework of my research, an extensive preprocessing strategy was used in the investigation
of automated cardiac health assessment as the first part. Resampling, normalization, and histogram
equalization are the techniques that helped improve the quality of the input data. Data augmentation
techniques were used as a post-processing step to further enhance the dataset, guaranteeing greater
diversity and robustness.

Table 13.2: Image Segmentation Result Comparison
Classifiers With DNN — Accuracy With GNN — Accuracy With CNN — Accuracy

SVM 0.72 0.76 0.793
LSTM 0.84 0.81 0.821
CNN 0.756 0.892 0.843

During the segmentation phase as the second phase, Deep Neural Networks (DNN), Graph Neural Net-
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works (GNN), and Long Short-Term Memory Networks (LSTM) were integrated using an inverted Unet
architecture. The segmentation models’ performance was evaluated and their efficacy was thoroughly
examined through the use of evaluation metrics like accuracy, precision, and the dice coefficient. Most
remarkably, the Invert-U-Net++ LSTM model performed better than the others, with the highest accuracy
of 0.813. The reason behind this achievement is that the model was able to identify complex relationships
and patterns in the cardiac images, which improved the segmentation task’s accuracy.

Moving to the final phase, for the classification process, Support Vector Machines (SVM), Long Short-
Term Memory (LSTM), and Convolutional Neural Networks (CNN) were implemented. Strict evaluation
criteria covering recall, accuracy, precision, and F1 score gave an extensive overview of the performance
of the classification models.

With an accuracy of 0.813, LSTM proved to be the most promising model for classifying cardiac health
as the results became clear. The strengths and challenges of each model were revealed by comparing
all approaches while taking segmentation and classification aspects into account. These results add
to a comprehensive understanding of the effectiveness of the suggested framework in automating the
assessment of cardiac health.
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0.3
0.2
0.1

Inverted UNet with Inverted UNet with Inverted UNet with
DNN — Accuracy GNN — Accuracy CNN — Accuracy

mSVM mLSTM = CNN

Figure 8: Graphical Representation of Classification Result

In a nutshell, our research represents a thorough investigation into automated cardiac health assessment,
combining preprocessing techniques, sophisticated segmentation methods, feature extraction approaches,
and a variety of classification models. The findings provide insightful information about the relative
effectiveness of each step, with LSTM emerging as a strong model for precise cardiac health classification.
The comparative analysis opens the door for further developments in automated medical image analysis
by illuminating the combined contributions of the suggested methods.

7 Conclusion and Future Work

This work proposed a powerful framework of cardiac image segmentation and classification using
the Sunnybrook Cardiac Dataset and tackled major issues in automated cardiac MRI analysis with a
comprehensive preprocessing pipeline including intensity normalization and histogram equalization to
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improve the consistency and contrast of the images. Building on this foundation a novel Inverted U-
Net architecture based on the same principle was introduced to accomplish accurate segmentation of
cardiac structures and was shown to have better delineation performance when compared to conventional
segmentation architectures, while the outputs of the segmentation process were then employed for binary
classification of cardiac conditions into normal and abnormal categories based on advanced learning
methods such as convolutional neural networks and support vector machines. The added reliability,
precision and clinical relevance of the findings by the use of post-processing and quality assurance
measures further underscored the practical value of automated cardiac image analysis to support clinical
decision-making, early diagnosis, and patient monitoring. To go forward, the suggested framework will
have future work trying to extend to three-dimensional cardiac MRI so as to obtain more spatial and
anatomical information, consider more advanced deep learning architectures such as attention-based or
transformer-based models, and evaluate the framework on larger multi-center datasets with incorporated
clinical information to improve the generalizability, reliability, and clinical practice.
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