

Optimized Cardiac MRI Feature Tracking of Different Cardiac Events

Azka Atiq¹, Akhtar Jamil², Muhammad Atif Saeed¹, Alaa Ali Hameed³

¹Department of Artificial Intelligence & Data Science, National University of Computer & Emerging Sciences, Islamabad, Pakistan

²Department of Computer Science, National University of Computer & Emerging Sciences, Islamabad, Pakistan

³Department of Computer Engineering, Istinye University, Istanbul, Turkey

azka.atiq@isp.nu.edu.pk, akhtar.jamil@nu.edu.pk, atif.saeed@isp.nu.edu.pk, alaa.hameed@istinye.edu.tr

Corresponding Author: *azka.atiq@isp.nu.edu.pk*

Abstract

Automated assessment of cardiac health from magnetic resonance imaging (MRI) plays an important role in assisting the clinical diagnosis of cardiac problems with great accuracy and in a timely manner; however, it is still challenged by variations in image quality and complex structures of the heart. This paper presents a multi-faceted deep learning model of cardiac image segmentation and classification with a multifaceted preprocessing and modeling pipeline. First, a strong preprocessing method, such as resampling, intensity normalization, and histogram equalization, was used to increase image quality and consistency and then the process of data augmentation to increase the diversity of the dataset and model robustness. For segmentation phase, Inverted U-Net based architecture is created by incorporating Deep Neural Networks (DNN), Graph Neural Networks (GNN), and Long Short-Term Memory (LSTM) networks to properly capture spatial and contextual dependency in the cardiogram images. The segmentation performance was evaluated with accuracy, precision, and dice coefficient as the Inverted U-Net++ with LSTM showed the best performance with the maximum accuracy being 0.813 by successfully modeling the complicated structural patterns. In the classification phase, the segmented cardiac images were categorized into normal and abnormal segmentation using Support Vector Machine or SVM, Long Short Term Memory or LSTM and Convolutional Neural Networks or CNN. Comprehensive evaluation with the help of accuracy, precision, recall and F1-score proved LSTM-based classifiers outperforming the competing models with the highest classification accuracy of 0.813. The comparison between segmentation and classification stages reveals the effectiveness and strength of the offered framework. Overall, the results show the potential of the proposed approach to provide accurate and reliable automated cardiac health assessment, and is a promising decision support tool for clinical cardiac diagnosis.

Article History

Manuscript Received
September 09, 2024

First Revision
November 11, 2024

Final Acceptance
November 30, 2024

Keywords: Cardiac Health Classification; Inverted U-Net; Deep Neural Networks; Image Segmentation; Cardiac MRI

1 Introduction

According to a survey conducted by the World Health Organisation (WHO) in 2017, Cardiovascular diseases claim the highest number of lives, and thus stand as a global health challenge; causing 17.9 million deaths annually, a figure poised to rise [1]. Rooted in heart and blood artery issues, these diseases, including arrhythmia, heart failure, stroke, and heart attacks, underscore the critical importance of understanding the intricacies of the human heart.

The heart, a muscular organ nestled within the rib cage on the middle left side of the body, is subdivided into four chambers: including both atriums (Left and right) and both ventricles. A vital organ responsible for pumping blood throughout the body, the heart relies on a sophisticated system of valves and chambers to maintain the flow of deoxygenated and oxygenated blood. Superior and inferior vena cava transport deoxygenated blood to the right atrium, initiating a complex sequence involving valves, ventricles, and arteries [2][3]. The left and right ventricles contract rhythmically, collectively orchestrating what is commonly known as the heartbeat, all while the interatrial and interventricular septa ensure the separation of deoxygenated and oxygenated blood [4].

This intricate cardiovascular system is susceptible to diseases, often exacerbated by unhealthy lifestyles. Cardiovascular diseases, with their devastating impact, necessitate thorough examination and diagnosis. Initial assessments commonly involve electrocardiograms (ECGs) to depict the heart's electrical impulses' rhythm, strength, and timing. Imaging, employing techniques such as Magnetic Resonance Imaging (MRI) and ultrasound, unveils the internal structures, with Cardiac MRI offering detailed insights into heart diseases [2].

In the realm of medical image analysis, a key challenge lies in automated segmentation, dividing images into meaningful regions for precise delineation of structures. This is particularly crucial in cardiac imaging, where defining the left ventricle (LV) is essential for evaluating cardiac function. The synergy between segmentation and classification, the latter involving categorizing images to distinguish healthy and unhealthy hearts, plays a pivotal role in automated cardiac image analysis[5]. Researchers have advanced these techniques, incorporating machine learning and deep learning to achieve greater accuracy with early detection of illnesses.

This research aims to bridge the transition from manual to automated cardiac image analysis. Section 1.1 provides motivation and background, exploring the significance of this shift. Section 2 identifies research gaps and articulates the primary problem this work seeks to address. A comprehensive review of relevant literature, including segmentation and classification strategies, is presented in Section 3. Section 4 delves into the proposed methodology, elucidating the developed strategy and related evaluation metrics. Subsequent sections detail the results and outline potential directions for future research, providing a meticulous examination of the research landscape.

1.1 Background

In the past, interpreting cardiac images required a lot of work and depended on the expert opinion of highly qualified individuals. Despite its established methodology, the manual approach proved to be laborious and depended on inter-observer variability, which had the potential of affecting the accuracy of the diagnosis[6]. In cardiac image analysis, the advent of automated segmentation and classification techniques represents a revolutionary development. These techniques improve the interpretation of cardiac images by integrating computational methods and utilizing artificial intelligence to achieve efficiency, objectivity, and scalability. Before the advent of automation, medical experts faced the difficult challenge of manually drawing boundaries between cardiac structures—a task full of subjectivity and resource-intensive efforts[7]. More advanced techniques for analysis became more and more necessary as medical imaging technologies developed. These requirements are fulfilled by automation in segmentation and classification offering to extract requisite information from cardiac images in a reliable and standardized way.

The early efforts of researchers in computational methods marked the beginning of the automation jour-

ney in cardiac image analysis. Since then, this journey has developed into the field of deep learning architectures, expanding the boundaries of automated analysis capabilities. This work adds new perspectives and techniques to improve the automated analysis of cardiac images, building on the foundations established by these pioneers.

In this academic investigation, we delve into the obstacles faced in cardiac imaging. Our study aims to make significant contributions to this field by:

1. This research endeavors to improve diagnostic accuracy by exploring the complexities of automated segmentation and classification in cardiac imaging.
2. It is also capable of revolutionizing the cardiovascular healthcare field. The amalgamation of cutting-edge technologies and inventive approaches functions as a landmark directing us towards a future where cardiac diseases can be identified and managed with unmatched precision and effectiveness.
3. This revolutionary potential emphasizes how rapidly automated cardiac image analysis research must proceed.

2 Literature Review

The leading cause of death is cardiovascular disease nowadays. It includes multiple diseases like heart failure, heart attack, stroke, arrhythmia, etc. All these diseases majorly can be detected by determining the affected heart[8]. Heart conditions can be identified by cardiac MRI. MRI segregates the Major biomarkers including ejection fraction and volume of the left ventricle to detect anomalies like coronary artery disease, and cardiac insufficiency[9][10]. The Left Ventricle has added importance as it carries out the pumping of blood to the entire body, thereby making left ventricle's segmentation a challenging and significant task[11][12]. Tremendous advancements in technology have entered our lives in every field. Deep Learning (a subset of Machine Learning) has the potential to improve medical specialties for better patient care. Medical Image Segmentation has thus addressed many aspects of cardiac image analysis; left ventricle segmentation remains the most common task [1][7]. It is also crucial for the quantification of cardiac function and morphology aiding further management of cardiac pathologies. As highlighted earlier, cardiovascular diseases stand out as the most common cause of death worldwide. [5][13][14]

2.1 Preprocessing

Various preprocessing techniques are used by researchers to improve the efficiency of segmentation and classification in medical image analysis. Filtering is a crucial step in this process that tries to improve image quality and lower noise [4][6][12]. To ensure consistency in the analysis, intensity normalization techniques are used to standardize pixel values across images. Resizing has been widely used, allowing for uniform processing by standardizing image dimensions. Furthermore, to achieve robust feature extraction, the distribution of pixel intensities is equalized through the use of histogram matching [13][11][15]. By helping to focus on pertinent regions of interest, cropping strategies are applied, which improves the accuracy of segmentation[16]. Additionally, a lot of people are using data augmentation techniques to make the dataset artificially larger, which improves model generalization. In medical image analysis, these preprocessing techniques work together to optimize the input data for subsequent segmentation and classification tasks[9][17][18].

2.1.1 Intensity Normalization

Dealing with the rising issues related to variations in imaging methods is a common challenge in medical image analysis. In Cardiac MRIs, to standardize image intensities for consistency and enhance the interpretability of results, one of the most commonly used techniques by the researchers is intensity normalization[8][14][19]. Some of the traditional techniques recommended by the researchers for

intensity normalization include Z-score normalization, Min-Max Scaling, Histogram-based Methods, and CLAHE (Contrast Limited Adaptive Histogram Equalization).

This review of the literature offers an overview of the various approaches and strategies used in intensity normalization for medical image processing, emphasizing the transition from conventional methods to more modern deep learning-based techniques[20]. Researchers persistently investigate innovative methods to tackle the peculiarities and difficulties associated with medical imaging data.

Most of the researchers have used quantitative metrics including MSE - Mean Squared Error, Mutual Information, and SSI - Structural Similarity Index, to evaluate the efficacy of intensity normalization techniques. Furthermore, depending on the medical imaging modalities, domain-specific metrics like accuracy, precision, recall, F1-score, and dice Coefficient are commonly used for segmentation tasks.

2.1.2 Resampling

Resampling is an important preprocessing step in medical imaging that involves changing the spatial resolution, voxel size, or image orientation. It is critical in standardizing data for analysis, improving computational efficiency, and addressing data heterogeneity challenges [6][19][21][22]. Some of the traditional techniques recommended by the researchers for resampling Spatial Resolution and Voxel Size Resampling, some of the researchers used Interpolation Techniques for resampling the dataset i.e. Trilinear Interpolation, Bilinear, and Bicubic Interpolation.

Researchers have used different metrics such as contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and structural similarity index (SSI) to assess the impact of resampling on image quality [12][23].

Resampling is a critical preprocessing step in medical imaging that influences image quality and comparability for subsequent analysis. From traditional interpolation methods to emerging learnable resampling techniques, ongoing research is refining resampling strategies, addressing challenges, and improving the adaptability of medical imaging data for a variety of applications [10][22][24].

This review of the literature provides an overview of resampling techniques in medical imaging, emphasizing the importance of standardizing spatial properties for various applications such as diagnosis, treatment planning, and image analysis [25]. Ongoing research and innovation aim to improve resampling methodologies in the medical imaging domain for increased efficiency and accuracy.

2.2 Data Augmentation

Medical image datasets are very limited in size and heterogeneity which causes difficulties for researchers in training models. To enhance the generalization of the model and robustness and overcome this challenge, data augmentation is used by the researchers to enlarge the dataset. From traditional to advanced techniques, researchers continue to innovate, addressing challenges and pushing the boundaries of augmentation techniques in the medical domain. Usually the researchers have used different techniques for data augmentation i.e. Geometric Transformations [9][26], Intensity Transformations [7][19][25], and Generative Adversarial Networks (GANs) [6].

To use this pre-processing technique researchers have been very careful about ethical concerns as medical data is very sensitive in terms of privacy.

An overview of data augmentation techniques for medical imaging is given in this review of the literature, with a focus on both conventional approaches and innovative methods that have been used to solve the particular problems caused by the limited availability and diversity of medical datasets. In this area, research is still being done to find new ways to enhance model performance and adaptability in medical image analysis.

2.3 Segmentation

The process of partitioning images into distinct regions of interest, such as organs, tumors, or anatomical structures, is known as segmentation [27]. In various medical imaging modalities, accurate segmentation is critical for diagnosis, treatment planning, and quantitative analysis.

2.3.1 Traditional Segmentation Techniques

Initially, researchers have used different traditional segmentation techniques to segment the medical image data into different parts. Researchers have used different traditional segmentation techniques i.e. Thresholding [28], Region Growing [5][29], and Edge Detection [3][13][30].

2.3.2 Intensity-Based Segmentation

Some of the researchers have also used different intensity-based segmentation techniques i.e. Fuzzy C-Means(FCM) as a clustering algorithm, considering the intensity and spatial information[31]. Robust for segmenting tissues with overlapping intensity distribution. Some researchers also used K-Means clustering for partitioning pixels into different clusters based on intensity values [24]. This clustering technique requires careful initialization and may be sensitive to outliers, so this will not perform much better on medical imaging datasets.

2.3.3 Machine Learning based Segmentation

Researchers have widely used two machine learning techniques for medical images segmentation i.e., Random Forest and Decision Trees [2][11][28][30]. Both techniques are supervised learning-based models for pixel-wise classification. Efficient and robust but may struggle with complex anatomical structures.

2.3.4 Deep learning based Segmentation

Researchers have developed different U-Net variants and architectures to address the challenges faced in medical image segmentation. Ronneberger et al. in "U-Net: Convolutional Networks for Biomedical Image Segmentation" introduced U-Net architecture in 2015 which consists of a bottleneck, a contracting path, and an expansive path. Later in 2016, Milletari et al. in "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation" introduced V-Net which extends U-Net to 3D volumes, to incorporate 3D convolutions for volumetric medical image segmentation. Apart from direct variants, SegNet developed by Badrinarayanan et al. in "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation" in 2017 employs an encoder-decoder architecture similar to U-Net, emphasizing the use of pooling indices for efficient segmentation. Attention U-Net incorporates attention gates to selectively highlight important features. Oktay et al. introduced this variant in "Attention U-Net: Learning Where to Look for the Pancreas" (2018), enhancing the model's ability to focus on relevant regions. Inspired by ResNet architectures residual U-Net integrates residual connections. Reported by Çiçek et al. in "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation" (2016), it aims to alleviate vanishing gradient issues and ease training. Recurrent Net combines U-Net with recurrent layers to incorporate temporal dependencies Proposed by Li et al. in "On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task" (2018) for medical image segmentation in dynamic sequences[32]. Working in advancement for residual net and recurrent u-net, a combination of recurrent and residual connections proposed by Xue et al. in "Recurrent Residual U-Net for Medical Image Segmentation" (2019) addresses both temporal dependencies and gradient vanishing issues. Nested U-Net proposed by Isensee et al. in "Automated Design of Deep Learning Methods for Biomedical Image Segmentation" (2018)

incorporates multiple nested skip pathways to capture multi-scale contextual information. The most commonly used extension of the original U-Net by Zhou et al. "U-Net++: A Nested U-Net Architecture for Medical Image Segmentation" (2018) introduces densely connected skip pathways for improved information flow.

These variations demonstrate the U-Net architecture's versatility for a range of medical imaging applications, combining multiscale features, recurrent connections, and attention mechanisms to improve segmentation performance and accuracy [9][23][27]. Researchers are still looking into new architectures and modifications to enhance U-Net-based models' performance in medical image segmentation.

2.4 Classification

Researchers studying the classification of cardiac images have used a variety of deep learning techniques (subset of machine learning technique) include Random Forests, Long Short-Term Memory Networks, Convolutional Neural Networks, and Multi-Layer Perceptrons. The combined application of these strategies advances the effectiveness of healthcare interventions and improves the accuracy of diagnosis. Within the field of cardiac image classification, researchers have utilized Random Forests (RF) as a robust and versatile approach for distinguishing between abnormal and normal hearts. As an ensemble learning technique, RF combines several decision trees to create an effective predictive model. RF performs exceptionally well when handling intricate and non-linear relationships within the extracted features in the context of cardiac image analysis[32]. RF offers a thorough comprehension of the underlying patterns in segmented cardiac images by combining the results of several decision trees. Random Forests are an invaluable tool for precise classification in the field of cardiac health assessment because of their versatility in handling a wide range of features and their effective skill in handling high-dimensional data. Another approach used to classify normal and abnormal hearts is Convolutional Neural Networks (CNNs). CNNs use convolutional layers to learn hierarchical features automatically which are obtained from segmented MRI images making them ideal for image analysis. CNNs are especially effective at identifying patterns and spatial dependencies in the segmented images when it comes to cardiac image analysis. The network can identify intricate local features and their combinations by applying convolutional operations, which helps to produce robust and distinctive characteristics for accurate classification. Long Short-Term Memory (LSTM) neural networks are used by researchers to classify abnormal and normal hearts using features taken from segmented cardiac images. Medical image datasets can benefit from the temporal analysis capabilities of recurrent neural networks (RNNs), such as long short-term memory (LSTM), which have demonstrated a high degree of proficiency in capturing sequential dependencies in data. By using this method, the model is capable of identifying complex patterns and temporal relationships among the sequential features, which helps with the accurate classification of cardiac conditions.

3 Methodology

This section is the starting point for deciphering the details of my suggested segmentation and classification methodology for cardiac images. The methodology serves as a guide that directs the course of our research, delineating the systematic approach utilized to attain precise and significant outcomes. We will go into detail about the particular techniques and algorithms applied to image segmentation, explaining how the boundaries of cardiac structures are accurately drawn. At the same time, the section will reveal the specifics of the classification process, demonstrating the characteristics and standards used to classify divided areas.

3.1 Dataset

Medical image computing and computer-assisted intervention (MICCAI) is an International Conference. The Sunnybrook Cardiac dataset was prepared for the MICCAI 2009 Left Ventricle Segmentation challenge. It can currently be accessed through the Cardiac Atlas Project (CAP) under a public domain

license. SCD contains 45 short-axis cine magnetic resonance images in DICOM (Digital Imaging and Communications in Medicine) format. DICOM format contains multiple parameters of patient and image metadata.

The CMR images are divided into four pathological groups which include heart failure without infarction, heart failure with infarction, hypertrophy, and healthy. Out of 45 images, the healthy pathology group contains 9 cases, and in the unhealthy pathology group of hypertrophy, heart failure with infarction, and heart failure without infarction, there are 12 cases each. 4 pathology groups are generalized into binary classifications i.e. healthy and unhealthy classes.

Images in this dataset are captured at a time resolution of 20 cardiac phases per cardiac cycle while the patient holds his breath for 10 to 15 seconds. From the base to the apex, 20 frames in 6–12 slices of the short-axis view steady-state free precession (SSFP) images were obtained. The obtained images have a thickness of 8 mm and a size of 256×256 pixels. For every patient record, a set of contours is manually drawn at the end-diastolic (ED) and end-systolic (ES) slices. Perry Radau of the Sunnybrook Health Science Center drew these contours [49 (reference of the basic website)]. Physicians are given access to the data without any pre-processing. Along with the contours, patient data is provided in a CSV file which gives information regarding the group of pathology, age, and gender of the patient. The complete dataset is divided into two groups: training and testing with a ratio of 80:20.

3.2 Data Preprocessing

This section studies the intricacies of preprocessing, which is a fundamental aspect of refining medical images. Preprocessing is essential because it improves variability in lighting, contrast, and overall image quality, establishing the foundation for further analysis. We'll demonstrate how to apply histogram equalization improving my cardiac image segmentation's robustness and classification. This method will be used to normalize intensity distributions so that different images have a standardized contrast. We'll additionally go over how intensity normalization is applied, which an essential preprocessing step is meant to reduce variations in pixel intensities. By working together, these metrics help create a dataset that is more consistent and trustworthy, which prepares the groundwork for the segmentation and classification phases of cardiac image analysis that follow.

3.2.1 Histogram Equalization

It is a technique for image processing that improves image contrast by redistributing intensity levels. It's especially useful when an image has a limited contrast range, which means the pixel intensities are concentrated in a narrow range, making some details difficult to discern. Histogram equalization extends the intensity levels across the entire range, making the image more visually appealing and improving detail visibility. This is how it works:

- Computing the Histogram: The original image's histogram is computed as the first step in histogram equalization. The frequency of occurrence of each intensity level in the image is represented by the histogram.
- Cumulative Distribution Function (CDF) Calculation: Next, compute the histogram's cumulative distribution function (CDF). The cumulative sum of histogram values is represented by the CDF, which provides the mapping of each intensity level to a new intensity level.
- Mapping Intensity Levels: Normalize the CDF to map the original intensity levels to new intensity levels. This normalization spreads the pixel intensities across the entire available range, effectively enhancing the contrast.
- Applying the Mapping Function: Replace the image's original intensity levels with the mapped intensity levels obtained from the normalization step.

3.2.2 Z-Score Normalization

Z-score normalization which is also known as standardization, is used for re-scaling pixel values in medical images so that they have a mean of 0 and a standard deviation of 1. This procedure converts the pixel values into a standard scale, allowing for easier comparison of different images and ensures equal contribution by each feature to the analysis.

3.3 Data augmentation

This technique is used in machine learning, particularly in deep learning, to enhance the size of a training dataset artificially by applying different transformations i.e. Rotation, Flip, Scaling, and Shearing to existing data. Data augmentation in the case of medical images entails applying transformations to the images, resulting in new, modified versions of the original images. When the available dataset is limited, this technique is useful because it helps to diversify the data, and enhance the performance and robustness of machine learning models.

3.4 Quality Control

Automated Quality Control (QC) metrics for medical images are critical tools for evaluating image quality and consistency in a healthcare or research setting. Quality metrics i.e. Uniformity, Spatial Resolution, Pixel Intensity Histogram Analysis, and Edge Sharpness are critical for ensuring accurate diagnosis, dependable research outcomes, and overall medical imaging workflow efficiency. Uniformity determines the consistency of pixel intensities across an image. Uniformity metrics aid in identifying variations in image brightness that may indicate imaging equipment problems. Spatial Resolution assesses the imaging system's ability to distinguish between small structures. Algorithms can evaluate the sharpness of edges and fine details in an image. Deep learning models can be trained to detect various image quality issues such as artifacts, noise, and distortions, allowing for a more comprehensive approach to automated QC.

3.5 Data Segmentation

This section examines various approaches to medical image segmentation that make use of the Inverted U-Net architecture in varied configurations. To improve segmentation performance, the first method combines Graph Neural Networks (GNN) with the Inverted U-Net to capture complex pixel relationships and contextual information. An alternative approach investigates the amalgamation of Long Short-Term Memory Networks (LSTM) with Inverted U-Net, capitalizing on LSTM's capacity for sequential learning to enhance spatial comprehension in medical image segmentation assignments. Furthermore, a third approach explores the combination of Inverted U-Net and Deep Neural Networks (DNNs), employing DNNs to extract intricate features necessary for precise segmentation. Along with the comparison of these three approaches, we will compare the results with existing work as well.

3.5.1 Inverted U-Net with DNN

Creating an inverted U-Net architecture with deep neural networks (DNNs) for medical image segmentation involves combining the inverted U-Net structure with additional layers of fully connected or dense neural networks. When implementing this architecture, it's important to experiment with the number of layers, filter sizes, and other hyperparameters to identify the configuration that suits best for your desired medical image segmentation task. Additionally, consider using transfer learning by initializing the encoder layers with pre-trained weights from models trained on large datasets if your dataset is small or similar to the source dataset. Transfer learning can help improve the model's performance and generalization ability.

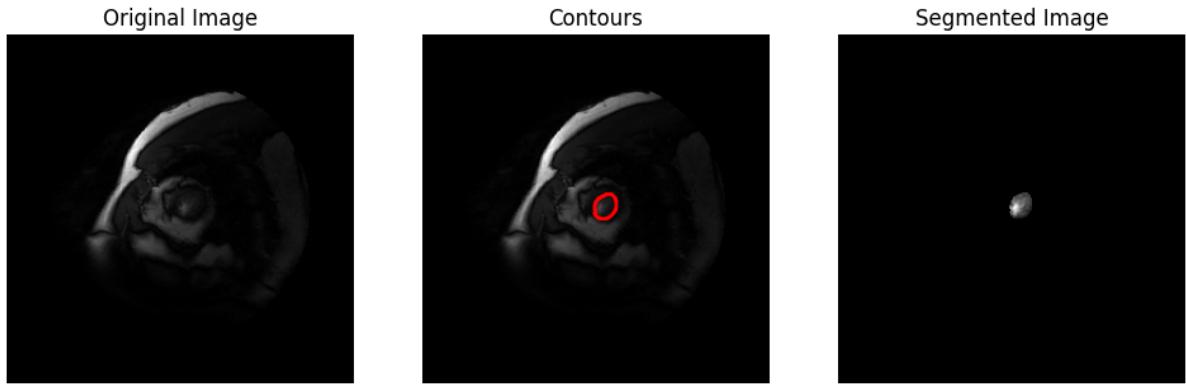


Figure 1: Segmented Image using Inverted U-Net with DNN

3.5.2 Inverted U-Net with GNN

Combining an Inverted U-Net architecture with Graph Neural Networks (GNNs) for medical image segmentation involves leveraging both spatial and relational information from the images. When implementing this architecture, it's crucial to carefully design the graph structure and consider how nodes and edges are defined. Experimentation with hyperparameters, including the number of GNN layers, filter sizes, and graph construction methods, is necessary to optimize the model's performance for the specific medical image segmentation task at hand. Additionally, consider leveraging pre-trained GNN models or pre-trained U-Net encoders to enhance the model's capabilities, especially if the dataset is limited.

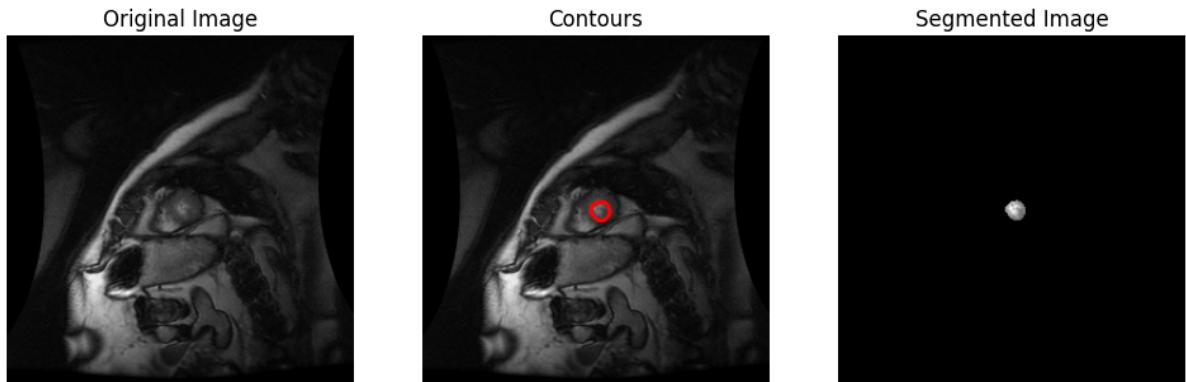


Figure 2: Segmented Image using Inverted U-Net with GNN

3.5.3 Inverted U-Net with LSTM

Combining an Inverted U-Net architecture with Long Short-Term Memory (LSTM) networks for medical image segmentation allows the model to capture both spatial features through the Inverted U-Net and temporal dependencies through the LSTM. When implementing this architecture, it's important to experiment with the number of LSTM layers, filter sizes, and other hyperparameters to identify the configuration that best suits for your specific medical image segmentation task. Also, consider the computational complexity and memory requirements associated with using LSTM layers, especially if dealing with large medical image sequences.

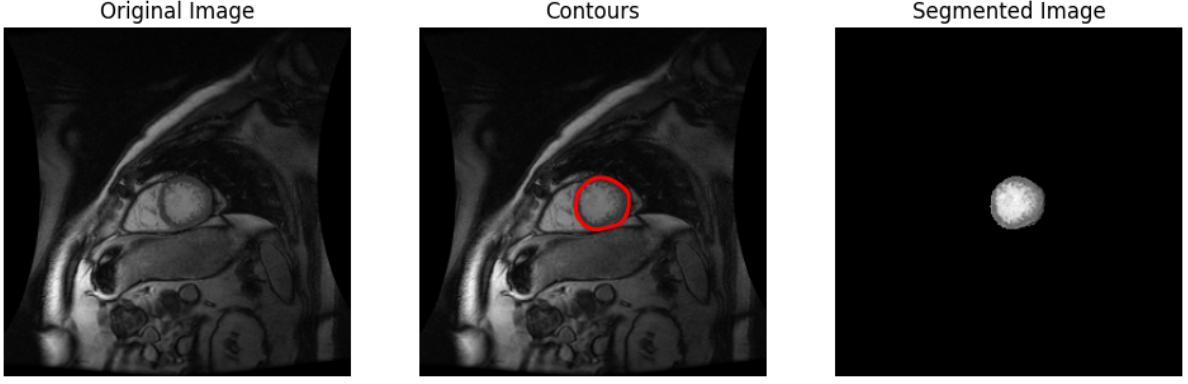


Figure 3: Segmented Image Inverted U-Net with LSTM

4 Image Segmentation Performance Metrics

To assess the accuracy and reliability of the generated segmentations, evaluation of the performance of medical image segmentation is critical. A number of metrics are commonly used for quantifying the quality of segmentation results. Here are some key performance metrics for medical image segmentation:

4.1 Dice Coefficient (DSC)

$$DSC = \frac{2|X \cap Y|}{|X| + |Y|} \quad (1)$$

Where A and B are the segmented and ground truth regions, respectively. Advantages: DSC measures the overlap between the predicted and ground truth regions, providing a balanced assessment of both false positives and false negatives.

4.2 Precision (Positive Predictive Value)

$$Precision = \frac{TP}{TP + FP} \quad (2)$$

Advantages: Precision measures the accuracy of positive predictions, indicating how many of the predicted positive cases are actually positive.

4.3 Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \quad (3)$$

We evaluated the performance of various U-net models during the segmentation phase, paying focus on Invert-U-Net++ variants that included a variety of architectures. Notably, after 30 training epochs, the Invert-U-Net++ LSTM model showed the most promise, obtaining a Dice Coefficient of 0.796. This measure illustrates how well the LSTM variant outperforms conventional deep neural networks (DNN) and graph neural networks (GNN) in terms of accurately defining cardiac structures. Furthermore, the Invert-U-Net++ LSTM model's precision of 0.831 and accuracy of 0.813 highlights its ability to positive segment instances.

Table 13.1: Image Segmentation Result Comparison

U-net Models	Epochs	Dice Coefficient	Accuracy	Precision
Invert-U-Net++ DNN	30	0.673	0.718	0.698
Invert-U-Net++ GNN	30	0.731	0.74	0.756
Invert-U-Net++ LSTM	30	0.796	0.813	0.831

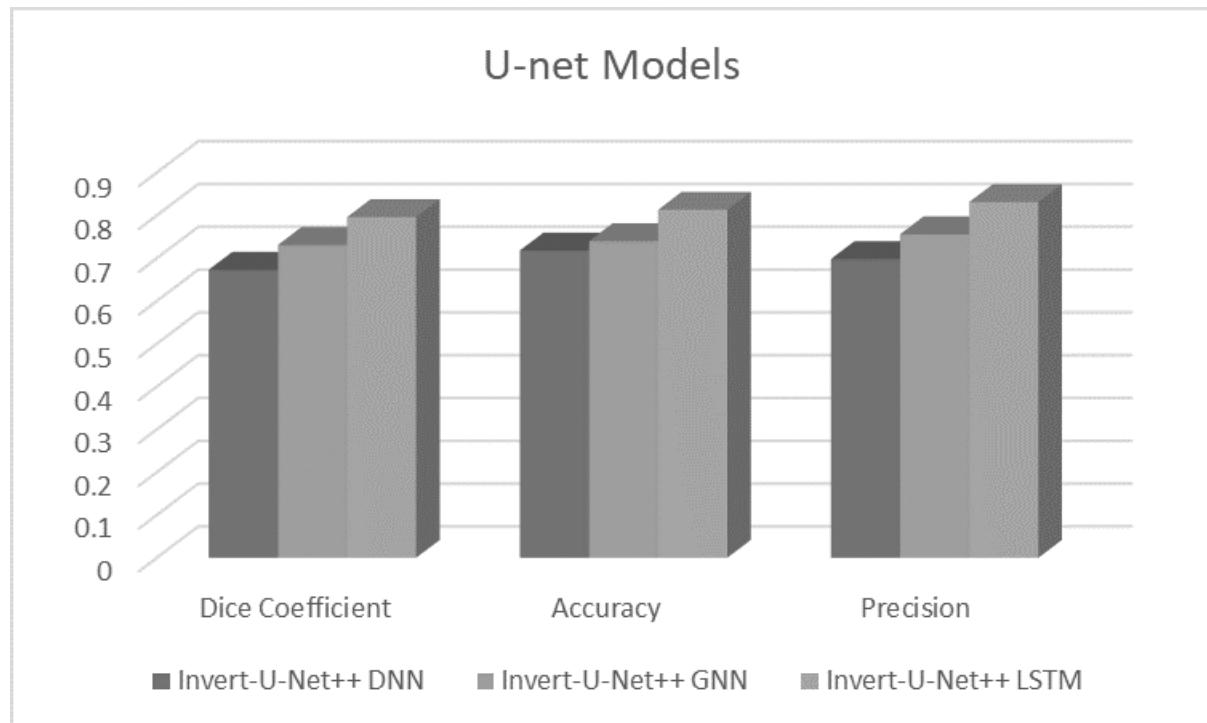


Figure 4: Graphical Representation of Segmentation Result

The thorough assessment of these segmentation models highlights the importance of utilizing cutting-edge architectures, especially LSTM, for accurate and subtle cardiac image segmentation. The results have direct implications for raising the standard of diagnostic accuracy in the medical field because the Invert-U-Net++ LSTM model's high precision and accuracy raise the standard of subsequent disease classification. These results add to the continuing discussion about the application of advanced neural network architectures in medical imaging by highlighting their ability to raise the bar for accuracy and dependability in critical diagnostic procedures.

5 Classification

5.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) have been applied in medical imaging for classification, segmentation, and diagnostic tasks widely. SVMs are known for their effectiveness in handling high-dimensional data and distinguishing between different classes. SVMs were initially applied to medical imaging datasets for tasks such as tumor classification, tissue segmentation, and disease detection. Researchers leveraged SVMs owing to their ability to handle complex, and non-linear relationships in the data.

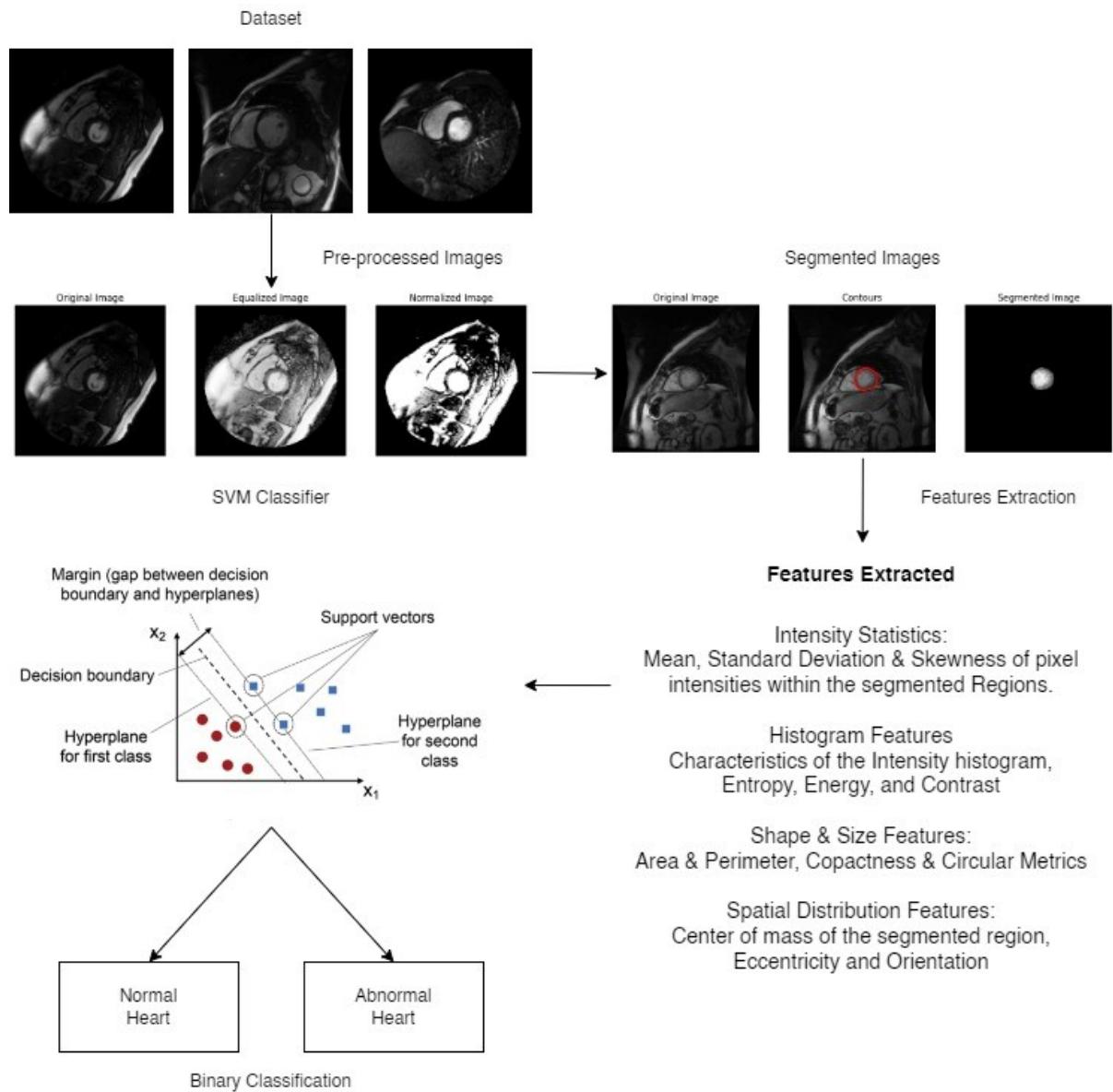


Figure 5: Flow of Classification using SVM Classifier

5.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network (RNN), are primarily designed for sequential data and time-series analysis. While they are not the most obvious choice for traditional medical imaging tasks, they can be applied to certain scenarios where temporal information is crucial.

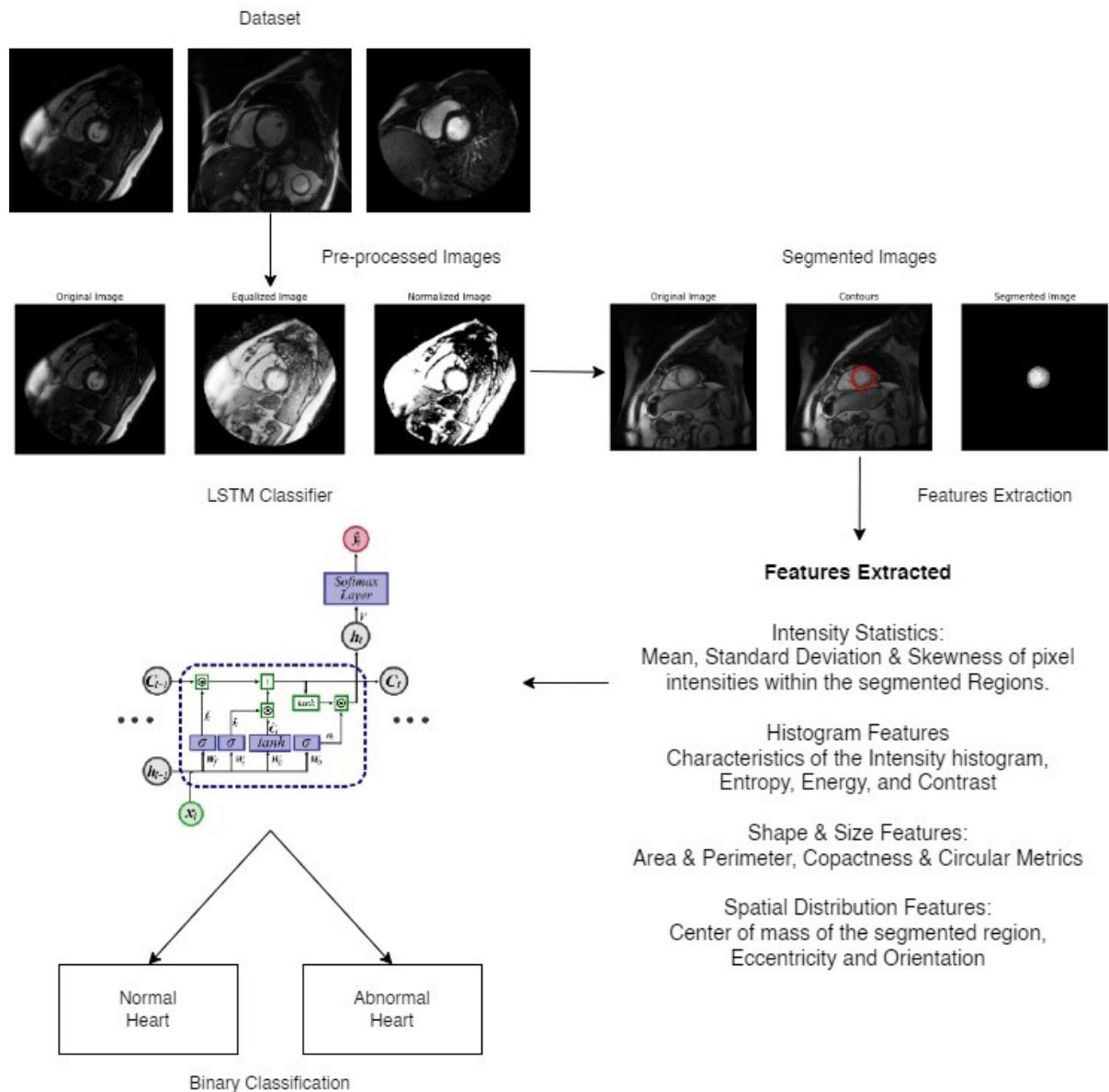


Figure 6: Flow of Classification using LSTM

5.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are utilized in medical imaging owing to their capability to learn hierarchical features from images automatically. Particularly, CNNs were found successful in tasks such as image classification, segmentation, and object detection.

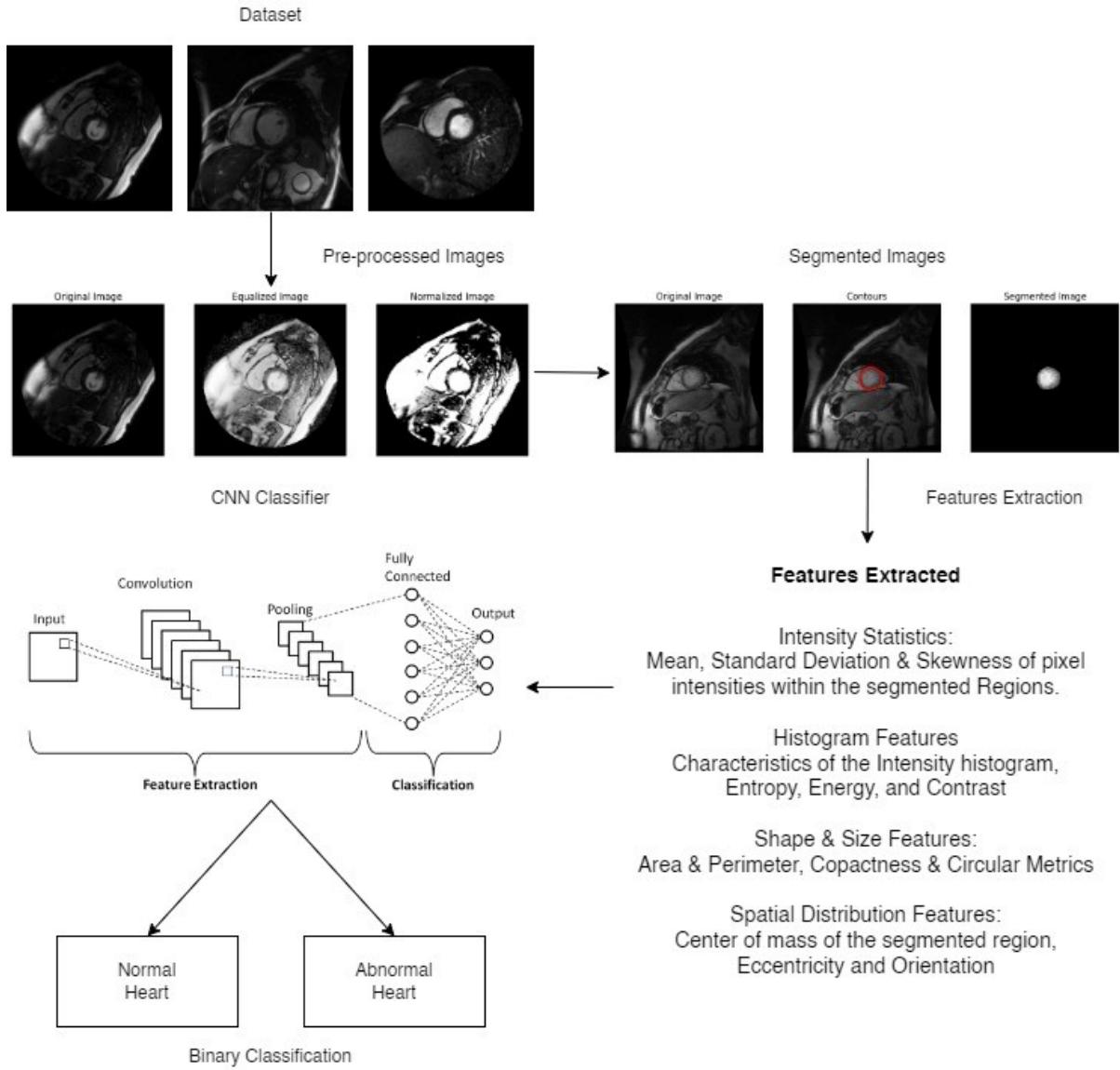


Figure 7: Flow of Classification using CNN

6 Results and Discussion

Within the framework of my research, an extensive preprocessing strategy was used in the investigation of automated cardiac health assessment as the first part. Resampling, normalization, and histogram equalization are the techniques that helped improve the quality of the input data. Data augmentation techniques were used as a post-processing step to further enhance the dataset, guaranteeing greater diversity and robustness.

Table 13.2: Image Segmentation Result Comparison

Classifiers	With DNN – Accuracy	With GNN – Accuracy	With CNN – Accuracy
SVM	0.72	0.76	0.793
LSTM	0.84	0.81	0.821
CNN	0.756	0.892	0.843

During the segmentation phase as the second phase, Deep Neural Networks (DNN), Graph Neural Net-

works (GNN), and Long Short-Term Memory Networks (LSTM) were integrated using an inverted Unet architecture. The segmentation models' performance was evaluated and their efficacy was thoroughly examined through the use of evaluation metrics like accuracy, precision, and the dice coefficient. Most remarkably, the Invert-U-Net++ LSTM model performed better than the others, with the highest accuracy of 0.813. The reason behind this achievement is that the model was able to identify complex relationships and patterns in the cardiac images, which improved the segmentation task's accuracy.

Moving to the final phase, for the classification process, Support Vector Machines (SVM), Long Short-Term Memory (LSTM), and Convolutional Neural Networks (CNN) were implemented. Strict evaluation criteria covering recall, accuracy, precision, and F1 score gave an extensive overview of the performance of the classification models.

With an accuracy of 0.813, LSTM proved to be the most promising model for classifying cardiac health as the results became clear. The strengths and challenges of each model were revealed by comparing all approaches while taking segmentation and classification aspects into account. These results add to a comprehensive understanding of the effectiveness of the suggested framework in automating the assessment of cardiac health.

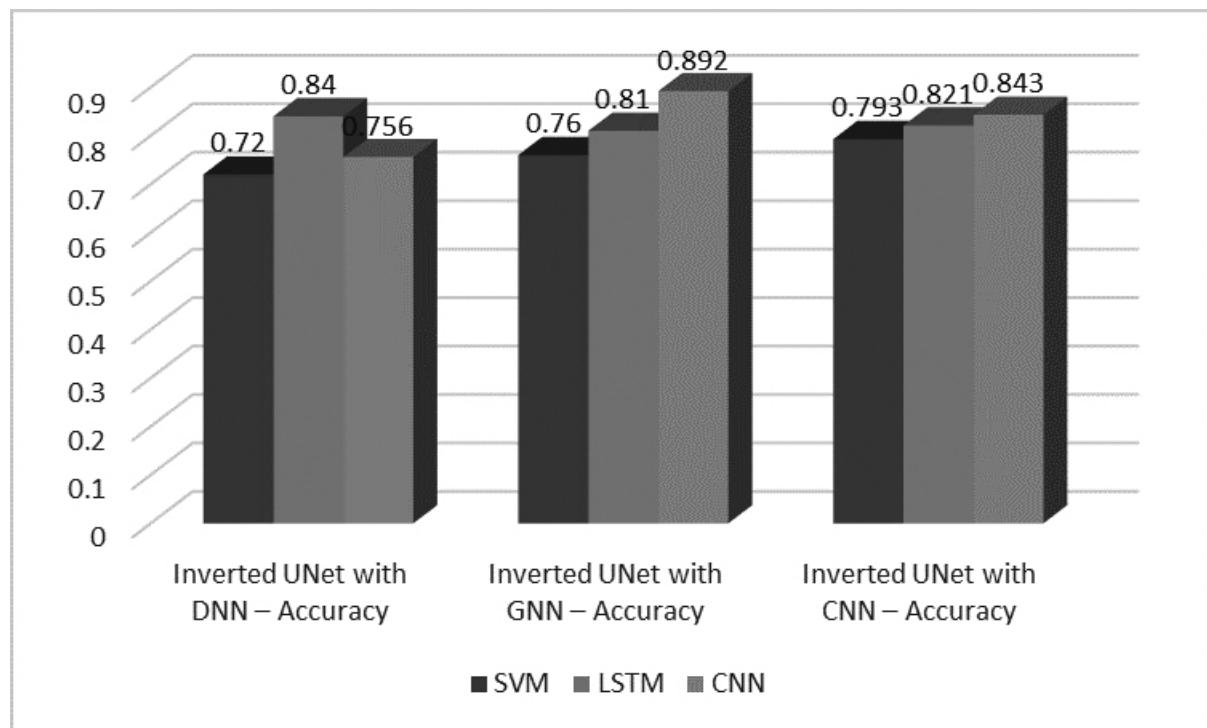


Figure 8: Graphical Representation of Classification Result

In a nutshell, our research represents a thorough investigation into automated cardiac health assessment, combining preprocessing techniques, sophisticated segmentation methods, feature extraction approaches, and a variety of classification models. The findings provide insightful information about the relative effectiveness of each step, with LSTM emerging as a strong model for precise cardiac health classification. The comparative analysis opens the door for further developments in automated medical image analysis by illuminating the combined contributions of the suggested methods.

7 Conclusion and Future Work

This work proposed a powerful framework of cardiac image segmentation and classification using the Sunnybrook Cardiac Dataset and tackled major issues in automated cardiac MRI analysis with a comprehensive preprocessing pipeline including intensity normalization and histogram equalization to

improve the consistency and contrast of the images. Building on this foundation a novel Inverted U-Net architecture based on the same principle was introduced to accomplish accurate segmentation of cardiac structures and was shown to have better delineation performance when compared to conventional segmentation architectures, while the outputs of the segmentation process were then employed for binary classification of cardiac conditions into normal and abnormal categories based on advanced learning methods such as convolutional neural networks and support vector machines. The added reliability, precision and clinical relevance of the findings by the use of post-processing and quality assurance measures further underscored the practical value of automated cardiac image analysis to support clinical decision-making, early diagnosis, and patient monitoring. To go forward, the suggested framework will have future work trying to extend to three-dimensional cardiac MRI so as to obtain more spatial and anatomical information, consider more advanced deep learning architectures such as attention-based or transformer-based models, and evaluate the framework on larger multi-center datasets with incorporated clinical information to improve the generalizability, reliability, and clinical practice.

References

- [1] M. Zakariah and K. AlShalfan, “Cardiovascular disease detection using mri data with deep learning approach,” *Int. J. Comp. Electr. Eng.*, vol. 12, no. 2, pp. 72–82, 2020.
- [2] C. V. Graves, R. A. Moreno, M. S. Rebelo, C. H. Nomura, and M. A. Gutierrez, “Improving the generalization of deep learning methods to segment the left ventricle in short axis mr images,” in *2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*. IEEE, 2020, pp. 1203–1206.
- [3] H. Zhang, W. Zhang, W. Shen, N. Li, Y. Chen, S. Li, B. Chen, S. Guo, and Y. Wang, “Automatic segmentation of the cardiac mr images based on nested fully convolutional dense network with dilated convolution,” *Biomedical signal processing and control*, vol. 68, p. 102684, 2021.
- [4] Y. Al-Issa and A. M. Alqudah, “A lightweight hybrid deep learning system for cardiac valvular disease classification,” *Scientific Reports*, vol. 12, no. 1, p. 14297, 2022.
- [5] J. Fournel, A. Bartoli, D. Bendahan, M. Guye, M. Bernard, E. Rauseo, M. Y. Khanji, S. E. Petersen, A. Jacquier, and B. Ghattas, “Medical image segmentation automatic quality control: A multi-dimensional approach,” *Medical Image Analysis*, vol. 74, p. 102213, 2021.
- [6] Y. Skandarani, N. Painchaud, P.-M. Jodoin, and A. Lalande, “On the effectiveness of gan generated cardiac mrис for segmentation,” *arXiv preprint arXiv:2005.09026*, 2020.
- [7] M. Penso, S. Moccia, S. Scafuri, G. Muscogiuri, G. Pontone, M. Pepi, and E. G. Caiani, “Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network,” *Computer Methods and Programs in Biomedicine*, vol. 204, p. 106059, 2021.
- [8] D.-H. Le, N.-M. Le, K.-H. Le, V.-T. Pham, and T.-T. Tran, “Dr-unet++: An approach for left ventricle segmentation from magnetic resonance images,” in *2022 6th International Conference on Green Technology and Sustainable Development (GTSD)*. IEEE, 2022, pp. 1048–1052.
- [9] F. Khozeimeh, D. Sharifrazi, N. H. Izadi, J. H. Joloudari, A. Shoeibi, R. Alizadehsani, M. Tartibi, S. Hussain, Z. A. Sani, M. Khodatars *et al.*, “Rf-cnn-f: random forest with convolutional neural network features for coronary artery disease diagnosis based on cardiac magnetic resonance,” *Scientific Reports*, vol. 12, no. 1, p. 11178, 2022.
- [10] M. Irshad, M. Yasmin, M. I. Sharif, M. Rashid, M. I. Sharif, and S. Kadry, “A novel light u-net model for left ventricle segmentation using mri,” *Mathematics*, vol. 11, no. 14, p. 3245, 2023.

- [11] E. Hann, I. A. Popescu, Q. Zhang, R. A. Gonzales, A. Barutçu, S. Neubauer, V. M. Ferreira, and S. K. Piechnik, “Deep neural network ensemble for on-the-fly quality control-driven segmentation of cardiac mri t1 mapping,” *Medical image analysis*, vol. 71, p. 102029, 2021.
- [12] F. E. Van Lieshout, R. C. Klein, M. Z. Kolk, K. Van Geijtenbeek, R. Vos, S. Ruiperez-Campillo, R. Feng, B. Deb, P. Ganeshan, R. Knops *et al.*, “Deep learning for ventricular arrhythmia prediction using fibrosis segmentations on cardiac mri data,” in *2022 Computing in Cardiology (CinC)*, vol. 498. IEEE, 2022, pp. 1–4.
- [13] Y. Chen, W. Xie, J. Zhang, H. Qiu, D. Zeng, Y. Shi, H. Yuan, J. Zhuang, Q. Jia, Y. Zhang *et al.*, “Myocardial segmentation of cardiac mri sequences with temporal consistency for coronary artery disease diagnosis,” *Frontiers in Cardiovascular Medicine*, vol. 9, p. 804442, 2022.
- [14] A. Ammar, O. Bouattane, and M. Youssfi, “Automatic cardiac cine mri segmentation and heart disease classification,” *Computerized Medical Imaging and Graphics*, vol. 88, p. 101864, 2021.
- [15] C. Cong and H. Zhang, “Invert-u-net dnn segmentation model for mri cardiac left ventricle segmentation,” *The Journal of Engineering*, vol. 2018, no. 16, pp. 1463–1467, 2018.
- [16] B. Wu, Y. Fang, and X. Lai, “Left ventricle automatic segmentation in cardiac mri using a combined cnn and u-net approach,” *Computerized Medical Imaging and Graphics*, vol. 82, p. 101719, 2020.
- [17] Z. F. Shaaf, M. M. A. Jamil, R. Ambar, A. A. Alattab, A. A. Yahya, and Y. Asiri, “Detection of left ventricular cavity from cardiac mri images using faster r-cnn.” *Computers, Materials & Continua*, vol. 75, no. 1, 2023.
- [18] S. Ahmad, M. Z. Asghar, F. M. Alotaibi, and Y. D. Alotaibi, “Diagnosis of cardiovascular disease using deep learning technique,” *Soft Computing*, vol. 27, no. 13, pp. 8971–8990, 2023.
- [19] P. Dileep, K. N. Rao, P. Bodapati, S. Gokuruboyina, R. Peddi, A. Grover, and A. Sheetal, “An automatic heart disease prediction using cluster-based bi-directional lstm (c-bilstm) algorithm,” *Neural Computing and Applications*, vol. 35, no. 10, pp. 7253–7266, 2023.
- [20] R. Deepika, P. B. Srikanth, and R. Pitchai, “Early detection of heart disease using deep learning model,” in *2022 8th International Conference on Smart Structures and Systems (ICSSS)*. IEEE, 2022, pp. 1–4.
- [21] M. T. García-Ordás, M. Bayón-Gutiérrez, C. Benavides, J. Aveleira-Mata, and J. A. Benítez-Andrades, “Heart disease risk prediction using deep learning techniques with feature augmentation,” *Multimedia Tools and Applications*, pp. 1–15, 2023.
- [22] S. Subramani, N. Varshney, M. V. Anand, M. E. M. Soudagar, L. A. Al-Keridis, T. K. Upadhyay, N. Alshammary, M. Saeed, K. Subramanian, K. Anbarasu *et al.*, “Cardiovascular diseases prediction by machine learning incorporation with deep learning,” *Frontiers in Medicine*, vol. 10, p. 1150933, 2023.
- [23] H. Wu, X. Lu, B. Lei, and Z. Wen, “Automated left ventricular segmentation from cardiac magnetic resonance images via adversarial learning with multi-stage pose estimation network and co-discriminator,” *Medical Image Analysis*, vol. 68, p. 101891, 2021.
- [24] S. Tripathi, T. S. Sharan, S. Sharma, and N. Sharma, “An augmented deep learning network with noise suppression feature for efficient segmentation of magnetic resonance images,” *IETE Technical Review*, vol. 39, no. 4, pp. 960–973, 2022.
- [25] S. Xu, H. Lu, S. Cheng, and C. Pei, “Left ventricle segmentation in cardiac mr images via an improved resunet,” *International Journal of Biomedical Imaging*, vol. 2022, 2022.
- [26] R. El Jurd, C. Petitjean, P. Honeine, V. Cheplygina, and F. Abdallah, “High-level prior-based loss functions for medical image segmentation: A survey,” *Computer Vision and Image Understanding*, vol. 210, p. 103248, 2021.

- [27] M. Zarvani, S. Saberi, R. Azmi, and S. V. Shojaedini, “Residual learning: a new paradigm to improve deep learning-based segmentation of the left ventricle in magnetic resonance imaging cardiac images,” *Journal of Medical Signals and Sensors*, vol. 11, no. 3, p. 159, 2021.
- [28] W. Chu and N. V. Tsekos, “Two deep learning approaches for automated segmentation of left ventricle in cine cardiac mri,” in *2022 12th International Conference on Bioscience, Biochemistry and Bioinformatics*, 2022, pp. 7–13.
- [29] W. Baccouch, S. Oueslati, B. Solaiman, and S. Labidi, “A comparative study of cnn and u-net performance for automatic segmentation of medical images: application to cardiac mri,” *Procedia Computer Science*, vol. 219, pp. 1089–1096, 2023.
- [30] D. Irmawati, O. Wahyunggoro, and I. Soesanti, “Comparing of cnn algorithms for feature extraction and classification on cardiac mri,” in *2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS)*. IEEE, 2022, pp. 375–380.
- [31] D. M. Popescu, H. G. Abramson, R. Yu, C. Lai, J. K. Shade, K. C. Wu, M. Maggioni, and N. A. Trayanova, “Anatomically informed deep learning on contrast-enhanced cardiac magnetic resonance imaging for scar segmentation and clinical feature extraction,” *Cardiovascular Digital Health Journal*, vol. 3, no. 1, pp. 2–13, 2022.
- [32] A. Bekkouche, M. MERZOUG, F. HADJILA, and O. DAOUD, “Segmentation of the left ventricle using improved unet neural networks,” 2023.